A cross-layer approach to Identity Management solution in networking: The SWIFT approach

Antonio F. Gómez Skarmeta
skarmeta@um.es
University of Murcia
Introduction

- Identity Management (IdM) solutions are still limited in scope.
- Users need:
 - ubiquitous access to the digital world.
 - simple and privacy enable access with a minimum number of separate service contracts.
 - simplify the multiple IDs and authentication methods
- Build a cross-layer identity framework with emphasis on networks and services → identity becomes a key convergence enabler & bridge for various platforms.
SWIFT leverages Digital Identities to:

- **Solve** identity fragmentation
- **Extend IdM systems** for **multiple services** at **different network layers** using **the same ID**
- **Bridge platforms** and **layers**
- **Converge** networks, services, applications and content
- **Connect** operators, service providers, micro-operators, even users as providers
Introduction

Identity Management Systems

Stratum

Societal/legal

Service

Transport

Today

Several IdM concepts

Several digital IdM-based concepts

Some digital IdM-based concepts

Future – i2010/eldM

Several eIdM-based concepts

Several eIDM-based concepts

Several elDM-based concepts

Several elDM-based concepts
Technology Targets

- Vertical integration of identity, privacy, trust and security across layers
- New identity-centric user schemes supporting different levels of information access control.
- Methods and techniques on how users are identified but preserve privacy
- Identity-based mobility solution: Adaptation across devices, services and networks.
- Semantic interoperability of eIDM systems – of legacy and possibly different instances.
- multiple personae
- identity-based privacy across layers
- data model for new & dynamic business

Cross-layer usability features
- ubiquitous connectivity
- user-centred mobility
- SSO based on vertical & horizontal federation principles

Separate management from resolution of identities at all layers

Virtual Identity Concept

SWIFT: Virtual Identities

One person has many faces to the digital world in different usage contexts or to separate roles or for privacy or billing reasons.

These faces are people’s avatars or Virtual Identities (VIDs) → these must be unlinkable even if some attributes are shared between them.
The Vertical Axis

- Identity Provider A (AuthN and Attr. Provider)
 - Digital Identity A
 - Credentials
 - Attributes
- Identity Provider B (Attribute Provider)
 - Digital Identity B
 - Credentials
 - Attributes
- Identity Provider C (Attribute Provider)
 - Digital Identity C
 - Credentials
 - Attributes

Identity Aggregator
- Virtual Identity
 - Credentials
 - Attributes

Service Provider
- Filters
 - Virtual ID

Digital Representation of Identity
- Social Net
- Preferences/Attributes (favorite color, age, etc...)
- SP Account

Legal Representation of Identity
- Passport/ID Card
- Service EULA
- Operator Contract
- Driver's License

INTERNET?
Passport/ID Card
Operator
Contract
Service
EULA
Driver's License
Legal Representation of Identity
Digital Net.
Preferences/attributes
(favourite color, age, etc...)
Virtual ID
Virtual ID
Virtual ID
Filtering
"FP7 SWIFT"
The main SWIFT objectives are:

- Cross-layer Identity management in scenarios where network access requires authentication
 - Also provides cross-layer SSO
- Virtual identities allowing the aggregation of attributes from heterogeneous sources
 - i.e. using different technologies
- Advanced access control policies for privacy management
 - Distributed policies
 - Deductive policies
Cross-layer approach

SWIFT addresses identity management across layers (vertical approach)

- Virtual identities are managed homogeneously among different services on different layers (network, application...)

![Diagram showing services and identities](image.png)
Additionally, SWIFT also includes the following “add-ons”

- LoA management
- Card-based model
- Virtual terminal support
 - Identity moves among user’s devices
- Service bound access
 - The service can pay for the user's network access
SWIFT defines an IdM architecture that:

- Allows full distribution of Identity information and functions keeping a hierarchical control
 - Distribution includes attribute provisioning, authorization and policy management, authentication and billing
- Manages interoperability among different existing IdM technologies
- Provides a distributed access control framework
 - Distributed policy management and actuation framework, which includes the distributed processing of policies.
SWIFT roles

- **Identity Aggregator (IdAgg)**
 - The Identity Aggregator is responsible for the management of User Profiles, Virtual Identities, SSO mechanisms and statements, etc.

- **Authentication Provider (AuthNP)**
 - An AuthNP provides methods to verify the EU’s authenticity.

- **Attribute Provider (AttP)**
 - An AttP manages information of the EU in terms of attributes, which can be related to specific services or for general purpose.

- **Service Provider (SP)**
 - A SP provides some kind of service to the EU. This role also includes the network service provider.

- **End User (EU)**
 - The EU makes use of the services provided by the IdM system (IdAgg, AuthNP, AttP) to get access to the services offered by SPs.
SWIFT roles

- Attribute Provider
- Identity Aggregator
- Authentication Provider
- Service Provider
- End User

Identity Plane

1. Access
2. Request Attr.A and Attr.B
3. Request Attr.A with pseudonym1
4. Request Attr.B with pseudonym2

Resource Access Policy:
- User should present:
 - Attr.A with value X
 - Attr.B with value Y

Alice VID metadata:
- Attr.A is in AttP1 under pseudonym1
- Attr.B is in AttP2 under pseudonym2

pseudonym1: Attr.A = X
pseudonym2: Attr.B = Y

AttP1
AttP2

FP7 SWIFT project
SWIFT addresses identity management across layers (vertical approach)

- The idea is, for example, to use the same virtual identity to access a network service than to access a web service

Benefits from the SSO mechanisms
The functionality of the SWIFT framework can be incorporated into the already existing architectures and protocols.

Sometimes the existing elements can be used to provide the SWIFT functionality:
- Network authentication using current AAA deployments
 - Using RadSec, Diameter...
- Web layer authentication based on current IdM solutions
 - Using Shibboleth, OpenID...
- Attribute management based on solutions at different layers
 - Using Shibboleth, SAML, Diameter...

Sometimes the SWIFT functionality can not be incorporated into any existing element
- New elements should be included to provide the missing functionality (e.g. the IdAggr)

SWIFT serves as intermediary or glue to perform cross-layer and federated identity management, using the different already existing identity silos
- E.g. It is possible to use RadSec to authenticate at network layer and after that access a web service, obtaining some needed attributes from a Shibboleth IdP and some others from an OpenID IdP
Example of instantiation
Example of instantiation

EU (SWIFT client)
- HTTP Request
 - artifact
 - aggregatorID

SP (SW-enabled HTTP server)
- AuthN Query
 - artifact
- Response
 - Assertion
 - Pseudonym (SP-IAM)
 - AuthN Statement
 - AuthNContext

IdAgg (SAML entity)
- Attribute Query
 - Pseudonym (AtP1-IA)
 - Attribute refs.
- Response
 - Assertion
 - Pseudonym (AtP1-IA)
 - Attribute Statement
 - Attributes

AttP1 (Shibb)
- Attribute Query
 - Pseudonym (AtP1-IA)
 - Attribute refs.

HTTP Response
- 200 OK
- SP Cookie

HTTPS
- SOAP/SAML
- (Shibboleth) SOAP/SAML
Several distributed PDPs can coordinate to take a whole authorization decision

- Using rules defined for one domain to deduce decisions that are valid in other domains

Example: A network operator can deduce an access control decision based on an authorization decision from another domain/service

XACML extensions defined to support deductive policies
New business: Service Bound Access

User picks M&M bookmark and selects nearby Hotspot (could be automatic)
- IdP knows SP’s identity through the Hotspot’s policy query
- IdP knows the user has a subscription with the SP

SP is charged for the user’s network access based on policies supplied by the IdP

Concept benefits:
- **Profit**: Hotspot is accessed by more customers
- **Increase customer base**: SP gains more users; value-added service
- **Trust**: Users get a consistent, simple view of the service
Conclusions

- Goal is to bring Identity Management to the network and services in a common approach
 - Enable access and reachability across domains
 - Make Identities of people, services, things, software modules a part of the future Internet architecture

- The Future Internet could
 - **Identity** as the end point of communication
 - whether user, service, thing, device or software module
 - **Identity** as the convergence layer
 - Privacy can be dealt with vertically thus reducing the danger of conflicting policies and mechanisms
 - **Identity** as an enabler for Intent-based communication
 - Support access, (non-) reachability, ubiquity

ICT Trust & Security FP7-ICT-2007-1 ICT-1-1.4
Secure Widespread Identities for Federated Telecommunications

Grant agreement no.: 215832
http://www.ist-swift.eu
Thanks