ALGORITHMS FOR ADVANCED CLANDESTINE TRACKING IN SHORT-RANGE AD HOC NETWORKS

The 2nd International ICST Conference on Security and Privacy in Mobile Information and Communication Systems (MobiSec ’10)

May 27th, 2010

Saif Al-Kuwari1,2 \quad Stephen Wolthusen1,3

1Info. Sec. Group, Royal Holloway, University of London, Egham TW20 0EX, UK
2Dept. of Info. and Research, Ministry of Foreign Affairs, P.O.Box 22711, Doha, Qatar
3Norwegian Info. Sec. Lab., Gjøvik University College, P.O.Box 191, N-2802 Gjøvik, Norway
OUTLINE

- Motivation & Overview
- Basic tracking
 - *Single-tracker single-target tracking*
- Advanced Tracking
 - *Multiple-tracker single-target tracking*
 - *Handover tracking*
 - *Single-tracker multiple-target tracking*
 - *Virtual tracking*
 - *Multiple-tracker multiple-target tracking*
- Transmission algorithm
- Fault Tolerance
- Simulation results
- Tracking Accuracy
- Privacy & Legal Implications
OVERVIEW & MOTIVATION

- Tracking is an emerging application can either be:
 - **Active**: target is aware of tracking (e.g. tracking children)
 - **Passive**: target is unaware of tracking (e.g. criminals tracking)
- In this work, we consider passive tracking because it is more relevant to law enforcement and slightly less studied.
- Proposed tracking algorithms are generic (applicable to any mobile ad hoc technology)
- We proposed an agent-based tracking, entities involved:
 - **Target**: entity to be tracked (e.g. suspect/criminal)
 - **Tracker**: entity initiating the tracking (e.g. law enforcement)
 - **Agent**: random entities from the public that happen to present around the target during tracking, and are being recruited by the tracker to carry out the tracking.
OVERVIEW & MOTIVATION

Agents form small master-slave ad hoc networks (called piconets) which are either:

- **Tracking piconet**:
 - This is where localization takes place
 - Master is called *tracking-master*, and slave is *tracking-slave*
 - There is only one tracking piconet (per target)
 - This piconet must consist of at least 3 agents

- **Connecting piconet**:
 - connect tracking piconet with tracker(s)
 - Master is called *connecting-master*, slave is called *connecting-slave*
 - There can be arbitrary no. of connecting piconets (as necessary)
 - This piconet must consist of at least 2 agents
OVERVIEW & MOTIVATION
TRACKING SCENARIOS

- **Scenario 1:**
 - *Single tracker* tracking *single target*

- **Scenario 2:**
 - *Multiple trackers* tracking *single target*

- **Scenario 3:**
 - *Single tracker* tracking *multiple targets*

- **Scenario 4:**
 - *Multiple trackers* tracking *multiple targets*
Basic Tracking

- Single tracker tracking single target [AW09]
- The target is localized by the tracking piconet
 - *Trilateration* is used to localize the target where 3 reference points (agents) localize the target
- Tracking info. is then sent to the tracker and saved in a *tracking database*.
TRACKING SCENARIOS

- **Scenario 1:**
 Single tracker tracking *single target*

- **Scenario 2:**
 Multiple trackers tracking *single target*

- **Scenario 3:**
 Single tracker tracking *multiple targets*

- **Scenario 4:**
 Multiple trackers tracking *multiple targets*
ADVANCED TRACKING

- Multiple tracker tracking single target
- In this scenario, we introduce *handover tracking*
- We assume trackers are securely connected
 - This allows them to synchronize *tracking database*
- Usually, tracking network is handled by single tracker, but if the network breaks down, the *detecting-piconet* searches for any genuine tracker
 - If found, handover the tracking to it
 - Otherwise, the tracking-master becomes a *temporary tracker* and creates a *temporary tracking table*
- **Problem:** how can the *detecting piconet* authenticate a genuine tracker?
ADVANCED TRACKING

- Multiple tracker tracking single target
- Secure handover!
 - Trackers and all agents share a secret key (supplied to agents upon recruitment)
 - We proposed a simple 3-way handshake authentication protocol, similar to CHAP (r_i is a random number, $h(.)$ is a hash function, tempTT is the temporary tracking table)
TRACKING SCENARIOS

- **Scenario 1:**
 Single tracker tracking *single target*

- **Scenario 2:**
 Multiple trackers tracking *single target*

- **Scenario 3:**
 Single tracker tracking *multiple targets*

- **Scenario 4:**
 Multiple trackers tracking *multiple targets*
ADVANCED TRACKING

- Single tracker tracking multiple target
- In this scenario, we introduce *virtual tracking*
- In this scheme,
 - Every target has a separate *Virtual Tracking Network (VTN)*
 - VTN’s consist of:
 - Virtual Piconets (VP): each has a VPID
 - Virtual agents (VA): forming VP’s and each has a VAID
 - A single (physical) piconet or agent may possible have multiple VPID’s and VAID’s, respectively.
ADVANCED TRACKING

- Single tracker tracking multiple target
TRACKING SCENARIOS

- **Scenario 1:**
 - *Single tracker* tracking *single target*

- **Scenario 2:**
 - *Multiple trackers* tracking *single target*

- **Scenario 3:**
 - *Single tracker* tracking *multiple targets*

- **Scenario 4:**
 - *Multiple trackers* tracking *multiple targets*
TRACKING SCENARIOS

- **Scenario 1:**
 - *Single tracker* tracking *single target*

- **Scenario 2:**
 - *Multiple trackers* tracking *single target*

- **Scenario 3:**
 - *Single tracker* tracking *multiple targets*

- **Scenario 4:**
 - *Multiple trackers* tracking *multiple targets*
TRANSMISSION ALGORITHM

- To minimize the observability, it is recommended that the tracking-master doesn’t always send the tracking information through the same route to the tracker.
- By recruiting *additional* agents around the tracking-master, we create additional (redundant) routes.
FAULT TOLERANCE

- Minimum number of agents:
 - Tracking piconet: 3
 - Connecting piconet: 2

- **Recommendation**: recruit extra *backup* agents, so:
 - Tracking piconet: 3 + 3 (backups) = 6
 - Connecting piconet: 2 + 2 (backups) = 2

- Every agent is paired with a backup agent, so a failure in either is detected by the other by means of alive messages which are exchanged frequently among them.
FAULT TOLERANCE
SIMULATION

- We investigate the effect of mobility models and node density on the tracking process.
- In particular, we are mostly concerned about the period under which the tracking network is under *temp tracker*.

Scenario setting:
- Simulation area: 250 m²
- Targets: 10
- Trackers: 3
- Node densities:
 - Scenario 1: 20
 - Scenario 2: 50
 - Scenario 3: 80
 - Scenario 4: 100
 - Scenario 5: 120
- Mobility models:
 - *Random Waypoint*
 - *Brownian Walk*
 - *Gauss-Markov*
SIMULATION

Random Waypoint

Time

Node Density

Brownian Walk

Time

Node Density

Gauss-Markov

Time

Node Density

Target 10
Target 9
Target 8
Target 7
Target 6
Target 5
Target 4
Target 3
Target 2
Target 1
TRACKING ACCURACY

- RF measurements have an unavoidable error margin
- However, careful investigation of the signaling used in a particular technology may lead to better estimation
 - E.g. recent work [HS07] showed that measuring the Bluetooth’s **Received Power Level** usually yields better estimation than other Bluetooth parameters.
Privacy & Legal Implications

- Passive and agent-based tracking raise a number of legal and ethical concerns
- However, we assume that such procedures are conducted by law enforcement, where they are covered by national legislation, e.g. Regulation of Investigatory Powers Act (2000), in UK.
THANK YOU ...